Härdbarhetens inverkan på formförändring
Delprojekt inom FFI-SMART (Vinnova)

Hans Kristoffersen, Albin Stormvinter och Eva Troell

Project background

- To study the effect of hardenability on distortion, i.e. to account for the influence of alloying content from heat to heat in production.
- The long-term goal is to “develop guidelines for minimizing the effect of variations in hardenability on distortion”.
Method

- Part 1: Simple geometries
- Part 2: Production monitoring

Part 1: Simple geometries

1. Steel grade: Tubes 16NiCrS4 (Ovako 146S)
2. 3 different heats
3. Machining: C-rings and rings (Ø70 mm)
 - C-rings: 30 in total (10 for every heat)
 - Rings: 120 in total (40 for every heat)
4. Stress-relief annealing
5. Shape determination
6. Hardening was done without carburization:
 - C-rings: Vacuum HT and gas-/oil quenching
 - Rings: Atmosphere HT and salt-/oil quenching
7. Distortion analysis
Part 1: Hardenability, 16NiCrS4

Experimental and calculated hardenability of three heats (A, B and C)

Part 1: Distorsion analysis

- 3D scanning or coordinate-measuring machine (CCM)
- 3D scanning is done before and after heat treatment. It enables full visualization and evaluation of distortions.
Part 1: Hardness and distortions C-rings

- Hardness on the flat surface.
- Three measurements per C-ring.
- Mean value over every HT.

<table>
<thead>
<tr>
<th>Charge</th>
<th>Oil</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>39,9 ± 1,3</td>
<td>28,3 ± 0,9</td>
</tr>
<tr>
<td>B</td>
<td>39,7 ± 1,7</td>
<td>28,0 ± 1,6</td>
</tr>
<tr>
<td>A</td>
<td>41,3 ± 2,2</td>
<td>28,0 ± 2,7</td>
</tr>
</tbody>
</table>

Increased hardenability of heats

Part 1: Simple geometries

1. Steel grade: Tubes 16NiCrS4 (Ovako 146S)
2. Machining: C-rings and rings (Ø70 mm)
 - C-rings: 30 in total (10 for every heat)
 - Rings: 120 in total (40 for every heat)
3. Stress-relief annealing
4. Shape determination
5. Hardening was done without carburization:
 - C-rings: Vacuum HT and gas-/oil quenching
 - Rings: Atmosphere HT and salt-/oil quenching
6. Distortion analysis
Part 1: Hardness rings

Hardness C-rings and Rings

| Charge | Ring Hardness [HRC] | | | |
|---------|---------------------|---|---|---|---|---|---|
| C (V5174) | 39,9 ± 1,3 | 28,3 ± 0,9 | 45,0 ± 0,6 | 42,1 ± 0,7 |
| B (V6017) | 39,7 ± 1,7 | 28,0 ± 1,6 | 44,9 ± 0,5 | 40,1 ± 1,2 |
| A (V7628) | 41,3 ± 2,2 | 28,0 ± 2,7 | 45,3 ± 0,4 | 35,5 ± 0,7 |

Increased hardenability of heats

Hardness, mean value of all components with three indents/piece. Hence, 15 indents/HT for C-rings and 60 indents/HT for rings. Error given as ±1stdav.
Part 1: Distortion of quenched rings

Part 1: Distortion of quenched rings

Oil quenching

HEIGHT OIL-QUENCH

- **HEIGHT MACH. [mm]**
- **HEIGHT HARD. [mm]**

HEIGHT SALT-QUENCH

- **HEIGHT MACH. [mm]**
- **HEIGHT HARD. [mm]**

INNER SURFACE

- A OIL MACH.
- A OIL HARD.
- B OIL MACH.
- B OIL HARD
- C OIL MACH.
- C OIL HARD

OUTER SURFACE

- A OIL MACH.
- A OIL HARD.
- B OIL MACH.
- B OIL HARD
- C OIL MACH.
- C OIL HARD

HEIGHT MACH. [mm]

- 19.05

HEIGHT HARD. [mm]

- 19.05

WIDTH [mm]

- 38.96 to 39.02

HEIGHT [mm]

- 0 to 18
Part 1: Distortion of quenched rings

Salt quenching

INNER SURFACE

- A SALT MACH.
- A SALT HARD.
- B SALT MACH.
- B SALT HARD
- C SALT MACH.
- C SALT HARD

OUTER SURFACE

- A SALT MACH.
- A SALT HARD.
- B SALT MACH.
- B SALT HARD
- C SALT MACH.
- C SALT HARD

Part 1: Distortion of quenched rings

Oil and salt

The figures show a principal component analysis (PCA) of the rings, done by SIMCA*. The left-hand side figure shows that the distortion is affected by the quenching media. "Distortion space" is smaller for salt quenching.

The right-hand side figure shows that there is a strong influence of alloying content on distortion. Overlapping is minimal among rings from either oil or salt quenching.

*10 shape aspects were included in the analysis.
Part 1: Distortion of quenched rings

Data can be treated according to DoE, to study the effect of furnace layer and hardenability. Here the effect on outer diameter on mid-height is shown.

Part 2: Production monitoring

- Study the effect of hardenability on distortion of crown wheels
- Reduce influence of casting and forging → One supplier
- In total, forgings were collected from five different heats
- Every heat was represented of about 20 crown wheels
- All forgings were machined in sequence
- Shape determination before and after heat treatment
- Heat treatment in sequence on center furnace row.
Part 2: What we have analyzed

- Alloying content – Is there a difference among the heats?
- Average distortion – To compare with target values
- Identify outliers – Crown wheels with relatively large distortion
- Distortion vs. heat – Can we identify trends?
- Multivariate data analysis – Is it a useful tool?

Part 2: Alloying content

- Hardenability: Heats can be divided into two groups (Group 2 higher)
 - Group 1 – Heats M, N och P
 - Group 2 – Heats H och J (+C, Cr, Ni / –Cu)

- Micro-alloying content
 - Heat N and P has a much higher content of Al.
 - Heat P also has an increased content of Ti, relative to the other heats
Part 2: "Global distortion"

The figure is an graphical interpretation of six "global distortion" measurements. That is, two crown wheels which are superpositioned in the figure have identical distortions. If there would be no influence of steel heat (e.g. hardenability) all points (representing individual crown wheels) should be scattered around origin with no clear separation among the heats.

"Global distortion" e.g.
• Diameter
• Roundness
• Flatness
• Height

Dots represent individual crown wheels, colored according to steel heat

Heat N deviates from the other heats.

Figure produced with MVA software SIMCA

Slutsatser - sammanfattning

Allmänt formförändringar

• Vid härdförsörjning → Bildas martensit → Formförändring → Kompenserbar
• Önskade formförändringar som visar sig efter värmebehandling är komplex och orsakas av många faktorer
• Stål och tillverkningskredjan bygger in bärare av formförändringspotential som visar sig först efter värmebehandling.

Från detta projekt – fokus härdförsörjens inverkan på formförändringar

• Härdföring är en viktig faktor att beakta för att minimera formförändring:
 • Var konsistenta vid beräkning eller provning av härdförsörjning. Dokumentera och följ upp.
 • Legeringselement som ej fångas av härdförsörjning (t ex Al, Ti, Al/N) inverkar.
• Förändringar hos stålleverantör eller smedja måste tas hänsyn till.
• Finns goda förutsättningar att systematiskt studera formförändringar genom produktionsuppföljning. Identifiera faktorer och håll så många som möjligt konstanta, variera härdförsörjning. Multivariat dataanalys är ett bra verktyg.
• Spårbarhet till ugn, bana, lager och position
Scientific Work for Industrial Use
www.swerea.se

Thank you for your attention!