Steel design and high speed machining aspects in the transition from case hardening to induction hardening of automotive transmissions (MAC D)

PART OF **RI.SE**

swerea kimab

Scope of the MAC D project:

➔ To replace carburizing with induction hardening of transmission components

Method:

=> Investigate the feasibility of induction hardening of a few demonstrators.

=> Compare rough turning, hob milling and hard turning machining, carburizing steel vs induction hardening steels.

=> Compare mechanical properties of samples and demonstrators of the two hardening treatments.

=> Actually manufacture some 20-50 demonstrator parts, w induction hardening.

=> Make comparison of manufacturing costs.

The use of automotive steels

Heat treatments:

All gears are carburized

Most shafts as well

Some shafts are induction hardened

swerea

PART OF RI.SE

The MAC D project is about:

...moving from here

Induction coil Gear Water spray

...to here

...as heat treatment route of transmission components

PART OF RI.SE

swerea

Consortium

PART OF RI.SE

Materials

				wt%					рр	m
Steel grade	MAC D Name	С	Mn	Si	S	Cr	Ni	Мо	0	Ca
18CrMo4	С	0,19	0 <mark>,</mark> 81	0,29	0,024	1,06	0,12	0,16	10	7
35CrMo4	QL	0,34	0 <mark>,</mark> 81	0,31	0,026	1,12	0,11	0,18	12	8
50CrMo4	QH	0,50	0 <mark>,68</mark>	0,23	0,035	0,98	0,21	0,19	8	2
100Cr6	В	0,97	0,31	0,28	0,012	1,41	0,20	0,06	5	3

PART OF RI.SE

swerea

As-delivered conditions

Steel grade	18CrMo4	35CrMo4	50CrMo4	100Cr6			
Short name	С	QL	QH	В			
Supplier	Gerdau	Gerdau	Ovako	Ovako			
Heat treatment							
Quench & tempering I	•	 QL-T1 240 HB 	■ QH-T1 350 HB				
Quench & tempering II		• QL-T2 287 HB	 QH-T2 315 HB 	/			
Annealing**	▲ C-IA 160 HB)		◆ B-SA 200 HB			
Reference		Most attention of R&D					

PART OF RI.SE

swereaкімав

The necessity of high hardness prior to induction hardening (TTA-diagrams)

Start structure:

W Soft annealed

P Pearlitic

M Martensitic

Transformationtemperature depends of:

➡ Heating time

⇒ Start structure

50CrMo4 (1.7228)

Source: Orlich J., Rose A.: Atlas zur Wärmebehandlung der Stähle, Band 3, ZTA-Schaubilder

Materials in the hardened state

Demonstrator component

Gear module:	2.35
Outer diameter	168 mm
Helical angle	20°
Current steel	17CrMo7

PART OF RI.SE

Rough machining

...was made up of:

- Tool life tests in rough turning
- Tool life tests in experimental gear hobbing
- Tool wear studies and chip study
- Fundamental studies of the intermittent cutting process characteristics of gear hobbing.

Tool life in rough turning

PART OF RI.SE

swerea

Tool wear behaivour in rough turning

Gear cutting through experimental simulation

The test mimics:

- Realistic tool life
- Tool wear mechanisms of actual gear hobs
- The variation in chip thickness inherent in gear cutting.

PART OF RI.SE

swerea KIMAB

Chip breakability

swerea

Hard part turning

- Industrial cutting conditions
- Comparison of performance of a CC grade and PCBN

PART OF RI.SE

Tool life in hard part turning

PART OF RI.SE

swerea KIMAB

<u>Conclusions</u> green turning, gear hobbing & hard part turning

- Roughly 50% loss of productivity in rough turning (in this comparison)
- \Rightarrow Significant improvement in productivity with harder carbide grade (P05).
- Roughly 50% loss of productivity in gear hobbing (in this comparison).

=> A solution is to implement carbide hobbing for sufficient productivity in gear cutting of 350 HB

 Minimised distortion in induction hardening => Possibility to minimise/eliminate the need of hard part turning (?)

Mechanical properties and fatigue strength of the induction hardened 50CrMo4

IMPORTANT: Induction hardening is very geometry dependent. => All pre-tests should be made on the actually aimed component!

(Though very difficicult in a world that is used to evaluation that is optimised more to the test geometry than to the heat treatment)

PART OF RI.SE

swerea KIMAB

PART OF RI.SE

swerea

Multiaxial fatigue strength

SWerea

Rotating beam fatigue tests

PART OF RI.SE

Root testing of actual gear

Impossible to line-up fatigue loads of the helical demonstrator gear => spur gear was used in this task 25 20 12% 15 10 5 0 Induction Carburized 18CrMo4 hardened 50CrMo4 S=0.025% S=0.035%

Fatigue limit [kN]

PART OF RI.SE

Fatigue strength of induction hardened 50CrMo4 Summary

- Results very dependent on geometry!
- Fatigue strength of induction hardened 50CrMo4 is on par or (probably) slightly better than that of carburized 18CrMo4.
- Important to compare steels of similar sulphur content! (18CrMo4: S=0.025% 50CrMo4: S=0.035%)

Demonstrator component

Gear module:	2.35
Outer diameter	168 mm
Helical angle	20°
Current steel	17CrMo7

PART OF RI.SE

swerea

Manufacturing steps

No.	Sequence	Operation	
1	Supply of steel as bar from the steel producer to the forging company.		
2	Blank forging & heat treatment		
3	Arrival of gear blank at Fiat Powertrain.		
4	Turning operations. (& dimensional check)	OP 0	
5	Gear cutting.	OP30	
6	Chamfering and snagging.	OP40	
7	Washing.	OP50	
8	Drilling.	OP60	
9	Washing.	OP70	
10	Carburizing.	OP80	
11	Shot blasting of gear roots.	OPSU	
12	Fine turning of end surfaces.	CP100	
13	Grinding of gear tooth flanks.	OP110	

swerea

swereaкімав

Manufacturing of demonstrator gears of 50CrMo4

- 1. Forging to gear blanks of Ovako 528E at Fomas HotRoll (~ 70 pcs)
- 2. Heat treatment at HotRoll specified to 350 HB.
- 3. At RWTH WZL: Turning and hob milling (~ 30 pcs)
- 4. At Fiat: Chamfering of gear teeth.
- 5. EFD Induction: Induction hardening trials & evaluation

The induction hardening process and trials at EFD Induction

Typical case contour of carburized gear

Left edge

PART OF RI.SE

Middle

Right edge

swerea

swerea KIMAB

10 mm

Comparison of the two heat treatment processes: Carburizing vs Induction hardening

Based on a yearly production of 550 000 gears at the Mirafiori plant of Fiat Powertrain

Aspects dealt with:

- Process time
- Energy consumption
- Cost of investment and maintenance
- => Total cost of heat treatment

Machining processes:

- Tooling
- Manpower
- Machine cost
- Machining engagement times

PART OF **RI.SE**

swerea KIMAB

Process time

Carburizing:

- Carburizing: 2.5 h
- Tempering time: 3 h
- => Total: 510 min

Induction hardening:

- Hardening cycle: <30 s
- Induction tempering: 60 s (in a parallel low power setup)

=> Total: 2 min

PART OF RI.SE

Cost of heat treatment

Carburizing:

- Investment: 0.45 €
- Energy cost: 1.6 €
- => Total: 2.4 €

Induction hardening:

- Investment: 0.27 €
- Energy consumption: 0.3 €

=> Total: 0.6 €

PART OF RI.SE

swerea кімав

Machining costs

We have considered the following machining operations:

Operation	Engagement time [s] in today's production at Fiat
Internal facing	13
External facing	13
Finishing facing	8
Turning and facing	13
Turning and finishing facing	23
Finishing facing	13
Finishing facing	8
Hob milling	116
Chamfering	15
Snagging	15
Drilling	11
Boring	7
Hard part turning	26
Tooth grinding	125

PART OF RI.SE

swerea

Introduced the following modifications of cutting processes

450

Spreadsheet to alter machining costs

	Operation	Tools [#]	Staff cost [€/h]	Tooling cost (€/tool)	Machine cost [€/h]	Sharpening [€]	Time in machine [h]	Set-up time [s]	Machining time [s/pc]	Cost (€)/vear
ree	Tooling	1000		10				• •		10 000
	Machine				40		16130	15	90,6	645 200
G	Staff		20				16130	15	90,6	322 600
	Tooling	45		1000						45 000
	new hobs									
g	Tooling	360				200				72 000
bir	sharpening									
qo	Machine				40		20070	15	116,4	802 800
Ĭ	Staff		20				20070	15	116,4	401 400
	Tooling	50		500						25 000
ha	Machine				40		4580	15	15	183 200
С О	Staff		20				4580	15	15	91 600
rill-	Tooling	200		50						10 000
	Machine				40		7850	40	11,4	314 000
Δ.	Staff		20				7850	40	11,4	157 000
S	Tooling	550		100						55 000
Ë.	Machine				40		6230	15	25,8	249 200
ш.	Staff		20				6230	15	25,8	124 600
	Tooling	50		200						10 000
rin	Machine				40		22120	20	124,8	884 800
Q .	Staff		20				22120	20	124,8	442 400
	Total									4 846 k€
	cost/year (€)									
	Total									9€

Machining costs

	Total machining costs
Carburizing	9€
Induction hardening	12€

PART OF RI.SE

swerea

Major conclusions and thoughts of the project

- Induction hardening is a technical challenge to implement on helical gears due to the uneven hardening profile of the tooth.
- Induction hardening is on par or better than carburizing, from the mechanical strength, toughness and fatigue strength aspects.
- The component that was actually chosen as demonstrator makes lot of influence on the outcome o this project. A shaft (or king pin) would have been much more viable and straightforward.
- Rule of thumb: The less machining of a component the higher the potential of induction hardening.
- The process time of induction hardening is extremely short compared to carburizing => great potential!!
- The process time and lead time are key aspects in this comparison. The complete shift from batch
 process to in-line process showed too complex to evaluate in this project.
- The direct cost of IH is lower. (0.64 € vs 2.41€)
- The machining cost of carburizing is lower ($9 \in vs \ 12 \in$).

Thanks for your attention!

PART OF RI.SE

swerea