Additiv tillverkning: Möjligheter och utmaningar

Department of Industrial and Materials Science
Lars Hammar
E-mail: lars.hammar@chalmers.se
Phone: +46 31 7722692
Additive Manufacturing@Chalmers
Powder Metallurgy Materials Development Process Development

- 14 R&D-project on-going involving Chalmers
- **Competence centre for additive manufacturing – metal CAM²**
- Additive Manufacturing – focus area within Area of Advance Materials Science and Area of Advance Production at Chalmers
- Close co-operation with industry: powder manufacturers, manufacturers of AM-products, equipment providers, users of AM-products
 - 7 PhD students, 1 post-doc, 1 engineer, 2 researchers
Before and in addition to CAM²

- MSc course on additive manufacturing (~40 students)
- Bachelor course on additive manufacturing (~10 students)
- Chalmers either co-ordinator (C)/project partner (P) in a number of projects:
 - Swedish Arena for Additive Manufacturing of Metals (P)
 - Industrial PhD student supported by Höganäs (C)
 - Industrial PhD student supported by Linde (C)
 - HQ-PM-AM funded by Vinnova/Metalliska material (C)
 - LIGHTCAM funded by Vinnova/LIGHTer (P)
 - FAMCOP funded by Vinnova/Production 2030 (C)
 - INNOKOMP funded by Vinnova/UDI (C)
 - 3DPrintPlus funded by Västragötalandsregionen/Tillväxtverket (C)
 - AMtoFLEX funded by Vinnova/Production 2030 (P)
 - RecAM funded by Vinnova/Metalliska material (P)
 - AM-Ni-base funded by Vinnova/Materialbaserad konkurrenskraft (C)
 - RAMP-UP funded by Vinnova/Metalliska material (P)
 - Re-Led 3D funded by Vinnova/FFI (P)

Materials addressed:
SS, Ni-base, Cu-base, Fe-base, etc.
Infrastructure

EOS M 100, EOS GmbH
Build volume: ø 100×95 mm
Energy type: 200W Yb-fibre laser

EOS M 290, EOS GmbH
Build volume: 250×250×325 mm
Energy type: 400W Yb-fibre laser

Source: EOS GmbH

Smaller printers for plastics (ZYYX 3D) and composites (MarkForge)
AM Softwares: Magics, Simplify 3D, Eiger
FOCUS:
- Material development for powder-based metal AM

Purpose and Goals
- Needs-driven top-quality research (pre-competitive, low TRL);
- Advantage for commercial/public sectors:
 - access to new knowledge that can be used in product and process development and other areas;
 - the opportunity to influence universities based on their needs;
 - individuals with strategic competencies that meet the needs of companies.
Centre for Additive Manufacture – Metal (CAM²)

Product Areas
- Automotive
- Heavy truck
- Turbomachinery
- Aerospace
- Food, oil and pharmaceutical industry
- Industrial gas supply
- Powder manufacturing
- Mining
- Tooling
- Customized implants

- Novel materials for AM
- Robust AM processes
- Skilled engineers
- Characterization and qualification
- Industrial AM integration
- New product areas

Financing: equally divided between three parties:
- VINNOVA
- Companies
- Academic partners
- Year 1: 12 MSEK in total
- Year 2-5: 24 MSEK/year in total
- special funds for the SMEs (separate process).
Centre for Additive Manufacture – Metal (CAM²)

Organisation

Research partners
- Chalmers (Department of Industrial and Materials Science) - Coordinator
- Fraunhofer-Chalmers Centre
- University West (Production Technology West group)
- Linköping University (Department of Management and Engineering)
- Swerea IVF
Centre for Additive Manufacture – Metal (CAM²)

Industrial partners

- **Core members**
 - AB SANDVIK
 - Alfa Laval Lund AB
 - Arcam AB
 - Atlas Copco AB
 - GKN Aerospace Sweden AB
 - Höganäs AB
 - Saab AB
 - Siemens Industrial Turbomachinery AB
 - Volvo Cars Corporation AB
 - Volvo Lastvagnar AB

- **Basic members**
 - AGA Gas AB
 - Carl Zeiss AB
 - Quintus Technologies AB
 - RZ Riboverken AB

- **Small and medium enterprises**
 - AIM Sweden AB
 - Brogrens AB
 - Cascade Control AB
 - Lasertech LSHAB
 - Modul System AB
 - Ortomat AB
 - Permanova Lasersystem AB
 - Tooltec AB
International Advisory Board

Prof. Eugene Olevsky, San Diego State University, USA

Prof. Carolin Körner, Erlangen University, Germany

Prof. Iain Todd, The University of Sheffield
Centre Board

Lars Nyborg,
Chalmers
Prof. of Surface Technology, centre co-director

Christian Wolfe,
Alfa Laval
Senior manager, Technology Development of manufacturing processes globally

Sima Valizadeh,
Atlas Copco
Mining and Rock Excavation Technique Empowering Innovation Manager

Fredrik Olofsson,
Brogren Industries
Member of the management team, R&D Manager

Louise Chen,
Höganäs
Manager market development, Surface coating

Elisabeth Åbom,
Saab
Aeronautics Vice President, Head of Airframe development

Dr. Anna Hultin Stigenberg,
Sandvik
Coromant Senior Technology Manager

Helena Oskarsson,
Siemens Industrial Turbomachinery
Project manager

Anna Davidsson,
Volvo Cars Corporation
Manufacturing Research and Advanced Engineering Manager

Sören Wiberg,
AGA Gas
Product Manager Heat Treatment

Robert Reimers,
GKN Aerospace Engine Systems
Manager R&T AM Center

Robert Gorner,
Volvo Group Trucks Operations
Director Manufacturing Engineering Powertrain

Anders Snis,
Arcam
Senior manager, Technology Development of manufacturing processes globally.
Internationalisation

<table>
<thead>
<tr>
<th>Research Organization</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego State University, USA</td>
<td>Prof. Eugene Olevsky</td>
</tr>
<tr>
<td>North Carolina State University</td>
<td>Prof. Ola Harryson</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory, USA</td>
<td>Dr. Ryan Dehoff</td>
</tr>
<tr>
<td>The University of Sheffield, UK</td>
<td>Prof. Iain Todd</td>
</tr>
<tr>
<td>Manufacturing Technology Centre, UK</td>
<td>Dr David Brackett</td>
</tr>
<tr>
<td>Fraunhofer ILT, Germany</td>
<td>Dr. Ing. Andreas Gasser</td>
</tr>
<tr>
<td>Fraunhofer IWU, Germany</td>
<td>Dr. Ines Dani</td>
</tr>
<tr>
<td>Fraunhofer IFAM, Germany</td>
<td>Prof. Berndt Keiback</td>
</tr>
<tr>
<td>Erlangen University, Germany</td>
<td>Prof. Caroline Körner</td>
</tr>
<tr>
<td>Direct Manufacturing Research Center (DMRC, Paderborn)</td>
<td>Dipl.-Wirt.-Ing. Christian Lindemann</td>
</tr>
<tr>
<td>Politecnico di Torino, Italy</td>
<td>Dr Mariangela Lombardi</td>
</tr>
<tr>
<td>CEIT, Spain</td>
<td>Prof. Francisco Castro</td>
</tr>
<tr>
<td>DTU, Danmark</td>
<td>Prof. Ole Sigmund</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International Industrial Partners</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialise NV, Belgium</td>
<td>MSc Paula Maghales</td>
</tr>
<tr>
<td>EOS Finland Oy, Finland</td>
<td>Dr Olli Nyrhilä</td>
</tr>
<tr>
<td>GKN Aerospace, UK</td>
<td>Dr Steven Mckown</td>
</tr>
<tr>
<td>The Carl Zeiss IMT GmbH, Germany</td>
<td>MSc S. Tomaszko</td>
</tr>
<tr>
<td>Linde AG, Germany</td>
<td>Dr. Pierre Foret</td>
</tr>
<tr>
<td>Siemens AG Power and Gas, Germany</td>
<td>Dr.-Ing. Sebastian Piegert</td>
</tr>
</tbody>
</table>
Centre for Additive Manufacture – Metal (CAM²)

- powder metallurgy science
 Chalmers and IVF

- advanced materials characterization
 Chalmers and LiU

- process development and simulation
 Chalmers, FCC and UW
Centre for Additive Manufacture – Metal (CAM²)

CAM² research areas (RA) cover whole chain of powder-based AM
Powder for AM

Comparison of powder size requirements for different AM processing with gas atomizing powder

<table>
<thead>
<tr>
<th>Technology</th>
<th>Alloys</th>
<th>Powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>12 (Al-Si, Co-Cr, IN718, IN625, Hast.X, Fe18Ni9Co, 174P-H, 316L, PH1 steel, GP1 stainless steel, CX steel, Ti-6Al-4V)</td>
<td>20</td>
</tr>
<tr>
<td>EBM</td>
<td>4 (Ti-6Al-4, Ti, Co-Cr, Inc718)</td>
<td>5</td>
</tr>
</tbody>
</table>
Lack of materials for AM!

Sustainable AM development: cheaper powder, high-volumes, new alloys

Additive Manufacturing: Metal Powder Demand

As the volume of metal additive manufacturing increases, so too will the demand for metal powder, a primary component for the process.
Powder for AM

Sweden has 25% of the world powder production

~ 0% of the powder for AM!
Powder development for AM
Public events/Open seminars - first one – October 11-th
Some examples printed in our EOS M290

- Student project
- Probes for wind tunnel
- Large component
Student project

- Vertical axis wind turbine
- Printed in stainless steel (316L)
- Printed in four pieces
- Mounted with snap-locks
Probes for wind tunnel

- Probe diameter 2.5 mm
- Printed in stainless steel (316L)
- Contains five channels (diam 0.55 mm)
- Internal channels electro polished
Large component

- Printed for \(\text{CAM}^2 \) member
- Printed in stainless steel (316L)
- Built height 264 mm
- Complex geometry
Thank you very much!