Low Pressure Carburizing and Corresponding Furnace Solutions

Matthias Rink
Head of Process Technology
Ipsen International GmbH, Kleve

Industrial Load with 900 Nozzles
Industrial load with 10200 “Nozzle bodies”

Detail view

Total view

Hardness Profiles of three nozzle bodies from layer 1, 6 and 12

Distance from surface in mm

Hardness in HV1

- \(T = 930 \, ^\circ \text{C} \)
- \(t = 70 \, \text{min} \)
- 20 bar \(N_2 \)
AvaC® Process Procedure

- **Temperature T**: 850 - 1100 °C
- **Pressure p**: -10 - 1000 Pa

Carbon Profile Development

- **CD₁**
- **CD₂**
- **CD₃**
- **CD₄**

Cycle with pulsed pressure

- **Carburize 1**
- **Diffuse 1**
- **Carburize 2**
- **Diffuse 2**
Case depths with constant and pulsed pressure

- **C₂H₂**
- **t = 86 min**
- **T = 900 °C**
- **16MnCr5**
- **p = const.**
- **p = pulsed**

Carbon Transfer with Acetylene

- Monolayer Carbon

© IWT Bremen
Sensors

Standard Sensors/Controlled Process Parameters:
• Furnace Temperature
• Furnace Pressure
• C₂H₂-Flow
• Boost-/Diffusion Times

Additional Monitoring Sensors:
• H₂-Sensor
• O₂-Sensor

Controlling Sensors (research projects, not in use)
• C₂H₂-flow, boost duration (under development)
• Carbon Transfer (available since years, not reliable)

Carburizing in Hydrocarbons

Advantages
- No internal oxidation
- Complex geometries
- Higher carbon transfer
- Faster carburizing
- Shorter cycle duration
- Large CHD
- Higher temperatures
- Very small CHD
- Lower gas consumption
- Lower consumption expenses
- No thermal radiation, no flames
- Environmental friendly
- No conditioning of the furnace

Disadvantages
- Formation of soot and tar
- Too high carbon content in edges and tips
- Effusion of Mn, Cr, Si
High Temperature Carburizing

Material: 14NiCrMo13-4
CHD = 2.0 – 2.3 mm
Carburizing Temp.: 1050 °C
Cycle Time: 10.5 h

Example: Mining Shafts

Specification:
Material: ~25NiCrMo12-5
Surface hardness: > 60 HRC
CHD 600: 0.9 - 1.2 mm external > 0.30 mm internal
Core hardness: 400-500 HV30

Results:
Surface hardness: 62-64 HRC
CHD 600: 0.90-0.94 mm external 0.77 mm internal
Core hardness: 460 HV30

T= 950 °C
l= 185 min
p= 1.5 bar N₂
Example: AvaC of aerospace bearings

REQUIREMENTS:
Hardness under the surface: >697 HV1 (60HRC) at 0.3 mm depth
Core hardness: 402-471 HV30 (41-47 HRC)
CHD 650HV1: 0.8-1.2 mm

SAMPLE PARTS SPECIFICATION
Name: Bearing, outer ring
Material: M50NIL
Dimension: Øo = 66.5 mm
Øi = 46.7 mm
l = 66.5 mm
Weight of part: 0.95 kg

HEAT TREATMENT
LPC (AvaC) temperature: 910 °C
LPC time: 20 h
Annealing: 580 °C, 2 h
Hardening temperature: 1080 °C
Sub-zero treatment: < -150 °C, 1 h
Tempering: 545 °C, 2 h

AvaC Results
Surface Hardness: 61.2; 60.9; 60.7 HRC
Core Hardness: 423, 426, 433 HV10
CHD(650HV): 1.10 – 1.12 mm
Wind Power

Material: 18CrNiMo7-6
Weight: 128 kg

Material: 18CrNiMo7-6
Weight: 60 kg

Hardness Profile after Case Hardening

Distance from surface in mm
Hardness in HV1

Furnace: T²T (AvaC), 12bar, N₂
Furnaces for Low Pressure Carburizing

- Single Chamber
- Two Chamber Chamber (Oil or Gas)
- Multi Chamber Furnaces, and
- Automatic Furnaces Lines

Turbo²Treater, etc.

RVHT-QGP 20 bar, etc
Ipsen Turbo²Treater®

Size M Installation at Customer

Ipsen Turbo²Treater®

Graphite Heating Chamber

- Graphite insulation
- Graphite load hearth
- Graphite heating elements

- Heating Power:
 - “S-size”: 75 kW/84 kVA
 - “M-size”: 150 kW/166 kVA
 - “XL-size”: 270 kW/297 kVA

- Special gas distribution system
- Heating chamber door closing system (3 closing positions with 1 turn)
- Load thermocouple feed through connections
Single chamber vacuum furnace line

Fully automatic vacuum furnace line
Loader 1.500 kg, rotating to both sides

Atlas Copco; Sweden
Oil quench vacuum hardening furnace

RVFOQ-524
Furnace back side with heating chamber

- Vacuum tight inner door
- Maintenance door for easy and safe access
- Vacuum pump system

Available standard sizes: S, M, XL
Single and two chamber vacuum furnace line

ARGOS Multi Chamber System
Example: Automotive shaft

<table>
<thead>
<tr>
<th>Part</th>
<th>Shafts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>20MnCr5</td>
</tr>
<tr>
<td>Dimensions</td>
<td>(l = 250 \text{ mm}) (\varnothing = 30 - 70 \text{ mm})</td>
</tr>
<tr>
<td>SH</td>
<td>58-62 HRC</td>
</tr>
<tr>
<td>CH</td>
<td>> 340 HV</td>
</tr>
<tr>
<td>CHD</td>
<td>0.5 + 0.4 mm</td>
</tr>
<tr>
<td>Carb.-temp.</td>
<td>950 °C</td>
</tr>
<tr>
<td>Quenching</td>
<td>20 bar, (\text{N}_2)</td>
</tr>
</tbody>
</table>

Charge (similar dimensions)

![Charge Image]
Automotive Results

Surface hardness: 61-62
CHD: 0.58 – 0.83 mm
Core hardness: 345-380 HV10

Quenching: 20 bar, N₂

Low Pressure Carbonitriding Cycle AvaC®-N
Summary

- **AvaC®(-N) Process Description**
 - Boost / Diffuse process
 - Pulsed Pressure Process
 - Acetylene pressure < 10 mbar (Ammonia pressure < 40 mbar)

- **Process Advantages**
 - High carbon transfer rate
 - Optimum case uniformity
 - Part-to-part, load-to-load repeatability
 - Absence of internal oxidation and accurate case uniformity lead to enhanced component quality
 - High furnace availability/reliability due to minimization of soot or tar formation
 - No post cleaning process (with high pressure gas quenching)

- **Furnaces for AvaC**
 - Depending on part size and throughput, Ipsen can provide the right furnace solution for low pressure carburizing

Contact:
Matthias.Rink@ipsen.de