

# Ti64 components fabricated using L-PBF processing under helium instead of argon



Sophie Dubiez-Le Goff<sup>1</sup>, Camille Pauzon<sup>2</sup>, Tanja Arunprasad<sup>1</sup>, Pierre Forêt<sup>1</sup>; Eduard Hryha<sup>2</sup> Linde AG, Munich, Germany, <u>sophie.dubiez-le.goff@linde.com</u>,

<sup>2</sup> Chalmers University of Technology, Göteborg, Sweden, <u>pauzon@chalmers.se</u> Making our world more productive



### **Linde/Chalmers partnership**







### **GDC Additive Manufacturing**

### AM Lab in Munich – Capabilities





#### Purpose:

In-house process development Part production

#### Features:

- Build surface 250\*250\*350mm
- 400W Fiber Laser, focus Ø 100 μm

6 Technology experts

3 PhD students

1 Marketing/Partner management

1 Engineering



#### Purpose:

Process development Internal training

#### Features:

Build surface Ø300\*400mm 500W Fiber Laser, focus Ø 100-500 μm



#### **Analytic:**

- Powder characterisation (SEM, CAMSIZER X2, KarlFischer Titration, Revolution)
- Metallography lab
- Chemical Analysis (Leco HNO)
- Gas Analytic (Gas Chromatography, ADDvance 02 precision)



#### Purpose:

Process development Internal training

#### Features:

Build surface Ø100mm 200W Fiber Laser, focus Ø 50 μm





### **AM** value chain





### **Content**



- How He improves the process stability in comparison to Ar, for Ti64 alloy
  - Jobs with EOS M290 printer & Pure He
  - Jobs with TP 3000 printer & Pure He
  - Jobs with EOS M290 printer & Ar-He mixtures

### Content



- How He improves the process stability in comparison to Ar, for Ti64 alloy
  - Jobs with EOS M290 printer & Pure He
  - Jobs with TP 3000 printer & Pure He
  - Jobs with EOS M290 printer & Ar-He mixtures

# Parts production



## -Parts production:

- Process gas
  - Argon 5.0 or Helium 4.6
  - 100 ppm 02 maintained during the job





Build platform 250mm\*250mm

PhD S. Dubiez-Le Goff, Linde Expert Powder Metallurgy for AM, SHTE: Swedish Suppliers of Heat Treatment Equipment Conference, 9 - 10 oktober i Norrköping, Sweden







Argon

Helium

Canon PowerShot SX50 HS camera disposed in front of the L-PBF machine's window on its front door

- ADDvance®02 precision into controlled mode
  - to ensure a residual level of 100 ppm  $O_2$ .
  - The system features an electrochemical cell which is not sensitive to hydrogen.





### **Argon**



### Helium

- Under He
  - Less convection-driven projections
  - Shorter and less curved bright trajectories
  - Smaller interaction spot

# **Relative porosity [Light Optical Microscope]**





- For a given set of paramerters:
  - → Higher density in Helium than in Argon

# **Relative porosity [micro-CT]**







- micro-CT system:
  - Yxlon FF35 CT
    - Acceleration voltage: 160 kV
    - Current:150 A
    - integration time of 3 s for 2880 projections.
       Minimum voxel size: 5,6 μm.

# **Relative porosity [micro-CT]**





### Content



- How He improves the process stability in comparison to Ar, for Ti64 alloy
  - Jobs with EOS M290 printer & Pure He
  - Jobs with TP 3000 printer & Pure He
  - Jobs with EOS M290 printer & Ar-He mixtures

### **Parts production**





# -Parts production:

- Process gas
  - Argon 5.0 or Helium 4.6
  - Un -controlled jobs





Argon 1000 ppm uncontrolled



Helium 1000 ppm uncontrolled





### Interpretation



Argon









Under He

- Less convection-driven projections
- Shorter and less curved bright trajectories
- Smaller interaction spot

#### Density [kg/ m³]:

Thermal conductivity [W/(m·K)]:

Specific heat capacity [J/(kg·K)]:

1.62

0.016

520

0.16

0.142

5190

### Complementary analyses by Schlieren imaging



# Project Reference Influence of shielding gas on LPBF process





Material: Ti6Al4V, Scan speed: 1,000 mm/s, Layer: 30 µm, Specimen: cube lnert gas: **Argon** (no flow, just atmosphere)



Material: Ti6Al4V, Scan speed; 1,000 mm/s, Layer: 30 µm, Specimen; cube Inert gas: Helium (no flow, just atmosphere)

#### Preliminary findings:

- Shielding gas has a significant impact on process dynamics
- Argon process collapses while Helium process remains steady
- Causes for measured effects are currently investigated
- Next steps: Evaluation of Varigon & Argon with 1000 ppm O2







Aachen Center for Additive Manufacturing | RWTH Aachen Campus

eite 1

### Content



- How He improves the process stability in comparison to Ar, for Ti64 alloy
  - Jobs with EOS M290 printer & Pure He
  - Jobs with TP 3000 printer & Pure He
  - Jobs with EOS M290 printer & Ar-He mixtures

# Parts production





-Parts production:

- Process gas

- Argon 5.0 or Helium 4.6 and Ar-He mixtures

- 100 ppm 02 maintained during the job







### **Productivity Improvement**



- Selection of 2 Helium-Argon mixtures
- Increase of laser power and scanning speed
- Control of oxygen levels at 100ppm via ADDvance O2 Precision®

#### **Conclusions:**

- Helium-Argon mixtures yield lower porosity
- Scanning speed can be increased by 45%



### **Conclusion**



- Helium and Argon-Helium mixtures
- − **a** stability of L-PBF process for Ti-6Al-4V
- → density of L-PBF process for Ti-6Al-4V
- → process built rate without compromising the as-built density