

Metal Binder Jetting Role of gases during printing and sintering

SHTE Conference 2022 Kai Zissel

Linde AM R&D - Lab in Munich

- 5 Technology Experts
- 4 PhD students

Laser Powder Bed Fusion:

- EOS M290
- TruPrint 1000
- TruPrint 3000
- Aconity Mini

Atomization:

Test Bench

NEW!

Binder Jetting

• Desktop Metal P1

Material lab

- HNO, PSD, Karl Fischer, flowability
- Metallography

Self-introduction

- PhD student at Linde (4 years)
- Location: Technology Center @ Unterschleißheim
- Division: LT-GDM-AM (Pierre Forêt)
- in cooperation with Chalmers University of Technology
- Background in Material Science & Engineering (M. Sc.)

Agenda

Binder Jetting – How does it work?

Why Binder Jetting? (Advantages & Limitations)

Role of gases for the process

How does Binder Jetting work?

Source: ampower.eu

Binder Jet 3D printing animation

Source: Desktop Metal

Production System P1

- Build volume: 200 x 100 x 400 mm

- Build rate: 1350 cm³/h

Production System P1 – Print chamber

Production System P1 – Printing video

Curing

- 150 °C 250 °C for several hours
- Crosslinking of polymer chains
- → Binder hardens
- Evaporation of binder (mostly water)

Depowdering

- Risk of breaking fine features
- Part should be big enough to find

Green parts (after Curing)

Debinding & Sintering

Multi-step process

Printing

Curing

Depowdering

Debinding & Sintering

Source: exone.com

Source: nabertherm.com

Source: 3dprintingcenter.net

~ 20 % shrinkage

Source: hubs.com

Source: gknpm.com

Source: gknpm.com

Agenda

Binder Jetting – How does it work?

?

Why Binder Jetting? (Advantages & Limitations)

Role of gases for the process

Binder Jetting – Productivity

Source: Desktop Metal

EOS M400: up to **100** cm3/h* Production System P50: up to **12.000** cm3/h*

Binder Jetting – Productivity

- No supports needed → powder sufficient support
- Full utilization of build volume
- Print speed only influenced by build height

Binder Jetting – Low costs

Binder Jetting – Challenges & Limitations

<u>Design</u>

- Dimensional control due to shrinkage \rightarrow design, process control, simulation
- Sintering supports necessary for large overhangs
- Depowdering of small features
- Very fine cooling channels not possible

Sintering

- Densities from 90-99 %
- Shrinkage not uniform
- Risk of C or N₂ contamination from binders
- Mechanical properties comparable to Metal Injection Molding (established process)
- Porosity of up to 1 % → bad fatigue properties (cyclical loads)

Recyclability

High reactivity of fine powders → decreasing processability over time

Application of Binder Jetting

Source: ampower.eu

- Benefits of Additive Manufacturing

- But now with

- High productivity
- Cheaper than other metal AM technologies

- Sweet spot:

- Max. dimension of 50 mm
- Lot sizes from 100-100.000
- Similar to Metal Injection Molding (MIM)
- **Applications:** Oil & gas, Automotive, Tooling

Binder Jetting – Metal powders

- Fine powders ($<25 \mu m$) for high sintering activity and powder bed packing density
- Metal Injection Molding powders suitable, but binder development complex

Commercially available materials (April 2022)

Material type	Desktop Metal*	Digital Metal*	Ex0ne*
Stainless steels	316 L, 17-4 PH, 420, DM HH	316 L, 17-4 PH	316 L, 17-4 PH, 304 L
Low alloy steels	4140	4140	
Tool Steels	D2, S7	D2	M2, H13
Nickel (Ni)	IN625	DM 625 (IN625), DM 247 (MAR-M 247)	IN718
Titanium (Ti)	-	Ti6Al4V	-
Aluminium (Al)	-	-	Al 6061
Copper (Cu)	Pure Cu	Pure Cu	-
Silver (Ag)	Pure Ag	-	-
Gold (Au)	Pure Au	-	-

A lot of R&D or customer qualified materials → Process development for each material a challenge!

Agenda

Binder Jetting – How does it work?

Why Binder Jetting? (Advantages & Limitations)

Role of gases for the process

Binder Jetting - Role of process gases

Printing – Role of gases

Safe print environment

→ Cheaper material choice

Reactive materials are sensitive to O_2 (oxidation)

→Increase reusability & part quality

Controlled humidity

- →Flowability/Spreadability
- → Binder interaction

Curing – Role of gases

- Batch furnace process at 150-250 °C
- Purpose:
 - Evaporation of moisture and organics
 - Crosslinking of polymer chains
 → strength of green part
- Inert environment benefits:
 - **Safe** environment
 - No powder oxidation (especially fo reactive powders)
 - Protects reusability
 - Protects sinterability

Debinding & Sintering – Role of gases

Debinding (~ 450 °C)

- Oxidation protection
- Reduction of oxides
- Transport of evaporating binder

Sintering (near melting temperature)

- Oxidation protection
- Reduction of oxides
- Carburization of steels
- Gas quenching

Further role of gases

Depowdering

Storage

Source: 3dprintingcenter.net

Source: Desktop Metal

Source: Farleygreene

Linde ADDvance powder cabinet

R&D projects

Source: Linseis

Reusability of 17-4 PH stainless steel powder in Binder Jetting

- Raw material (powder) as main cost factor \rightarrow reusability important
- Change in powder characteristics along the process chain
- Influence of gas along the process chain on powder reusability

Future:

- Development of tailored gas compositions for debinding & sintering of advanced alloys
- Design study on opportunities and limitations of Binder Jetting (small features, sintering)

Summary

- Raw material: metal powder + binder

- Multi-step process: printing, curing, debinding, sintering

- **Key benefits:** Productivity & costs

- Challenges:
 - Sintering shrinkage
 - Material & process development
- Benefits of gas along the process chain
- Increasing interest & material portfolio

Metal

powder

Thank you for your attention

Questions?

Kai.Zissel@linde.com

Making our world more productive

