WAYS TO REDUCE CO2 FOOTPRINT **KANTHAL**[®] USING ELECTRIC HEATING MATERIALS

KANTHAL®

SAFETY FIRST

Kanthal's objective is zero harm to our people, the environment we work in, our customers and our suppliers.

KIT

FIRST AID

PROTECTIVE EQUIPMENT

EMERGENCY NUMBER

REFERENCE POINT

ASSEMBLY POINT

PSYCHOLOGICAL SAFETY

OUTLINE

- Background
 - Kanthal and electric heating materials
- Reducing CO₂
 - Electrification of heating
 - Enabling of green technology

KANTHAL®

Founded in 1931 by metallurgist Hans von Kantzow in Hallstahammar

Wire and strip for electric heating elements

WHAT'S WEST OF VÄSTERÅS?

KANTHAL®

Founded in 1931 by metallurgist Hans von Kantzow in Hallstahammar

Wire and strip for electric heating elements

Success built on his new FeCrAI alloys

The Success: FeCrAI vs. Existing NiCr

- Forms aluminium oxide
 - Much more protective
 - -Higher temperatures
 - -Longer life
 - -Sulfidizing/Carburizing, No problem
- High and constant electric resistivity
- No nickel Cost benefit

The Success: FeCrAl vs. Existing NiCr

Both types still useful

MOST IMPORTANTLY: ELECTRIC HEATING

- Replaces burning of oil/gas
- Advantages:
 - Environmental
 - Process quality
 - Safety

WHY ELECTRIFY THERMAL PROCESSES?

ENVIRONMENTAL

- Green electricity \rightarrow Green heating
- BUT! Even if fossil power Better in total
 - Higher efficiency at big power plants
 - Electric ~95-98% efficiency

WHY ELECTRIFY THERMAL PROCESSES?

QUALITY

- Temperature control
 - Control over ramping
 - Exact
 - Uniform
 - Repeatable
- Clean
 - No combustion products
- Reduced Maintenance

WHY ELECTRIFY THERMAL PROCESSES?

SAFETY

- No gas pipes, fuel storage
 - Explosion risk eliminated
 - Fire risk minimal
- Exhaust gases None
- Cooler working environment
- Silent!
 - Gas burners can be 100dB+
 - Easier communication

EXAMPLES OF ELECTRIFICATION

OVAKO – VARIOUS FURNACES/PROCESSES

TUBOTHAL HEATERS

- 14 roller hearth furnaces electrified
- Advantages:
 - Estimated CO₂ savings of 1400–2000 tons/year
 - Improved quality Uniform heating, better control
 - Reduced maintenance costs
 - Improved work environment (silent, cool)
 - No combustion emissions of CO₂, NO_x, CO

HYBRIT – COKE TO HYDROGEN

GAS HEATED HYDROGEN TO ELECTRICALLY HEATED

- Reduce iron ore using hydrogen instead of coke
- Heated hydrogen needed
- Fossil free --> Need electric heating
- Kanthal working on heating solution
- Smaller ~250 kW heater tested first
- Target gas temperature: 1000 °C
- Full-scale heater if successful: 1 MW

KANTHAL – PIT FURNACE

KANTHAL SUPER ELEMENTS

- Heating of ingots and billets up to 1300 °C
- Elements of Molybdenum-Disilicide (MoSi₂)
 - For very high temperatures
 - Furnace temperature up to 1700–1800 °C possible
- Years between maintenance

ENABLING GREEN TECHNOLOGY

The Success: FeCrAl vs. Existing NiCr

- Forms aluminium oxide
 - Much more protective
 - -Higher temperatures
 - -Longer life
 - -Sulfidizing/Carburizing, No problem
- High and constant electric resistivity
- No nickel

LEAD COOLED NUCLEAR REACTORS

- Molten lead a viable option for nuclear
- But *very* corrosive to most alloys
- Kanthals work!

KANTHALS – RESISTANT TO MOLTEN LEAD

550 °C, 10 000 H

- Thin aluminium oxide
- Metal underneath unaffected
- Similar to stainless steel in water

KANTHALS – RESISTANT

550 °C, 10 000 H

CONCENTRATED SOLAR POWER

• Intermittent power

CONCENTRATED SOLAR POWER

- Intermittent power
- Thermal energy storage
 - Molten salt
 - Molten lead

Molten salt or lead

CONCENTRATED SOLAR POWER

WASTE/BIOMASS TO ENERGY

- Fuels
 - Wood chips/pellets
 - Recycled wood
 - Waste
- Heavily corrosive gases!
- Kanthals corrodes, but relatively slowly

NEW ALLOYS BEING DEVELOPED:

- Based on classical Kanthal FeCrAI alloys
- Still forms aluminium oxide
- Improved formability
- Improved weldability
- Compromise: Electric properties

SUMMARY

- Burning fossil fuels \rightarrow Electric heating \rightarrow Less CO₂
 - Bonuses:
 - Better quality and work environment
- Kanthals form aluminium oxide \rightarrow Enable green technologies \rightarrow Less CO₂
 - Highly protective
 - Resistant to molten lead and salt
 - Decent resistance against gases from burning waste/biomass

