

Project ROKOST

Can an optimized case hardening process improve productivity in Hard Part Turning by 50 percent?

Anna Ganea

Hard Part Turning

HPT – finish machining for achieving the right shape, dimensions and surface quality
Typically transmission components for automotive applications
Generally case hardened (carburized) steels, ~58-63 HRC
Cutting material: cBN

Hard Part Turning

Finish machining

Wear

Tool life

Hard Part Turning

Tool life through component quality

Safe tool life

Cutting speed influence – optimum Variations

Project motivation

Variations in carburizing have strong impact on HPT performance

- Experience from earlier research projects and test work and at end users
- Sub-optimal productivity in manufacturing
- Variations: both process selection and variability
- Relations not well understood

A need to increase understanding about underlying mechanisms

to enable tailoring the carburizing process

not only for component properties and cost effectiveness

but also for a more robust Hard Part Turning process

Project ROKOST

Project partners including full value chain -

automotive manufacturers together with suppliers of steels, heat treatments and machining solutions

Vinnova funded, program Hållbar produktion - FFI

Project duration 2018-2021

Understanding the link

Overall productivity

"Productivity = the value of output produced divided by the value of input or resources"

Overall productivity

Controlled wear of cutting tools

- Increased cutting speed and feed /
- Increased tool life

Improved consistency - robustness

- Better utilization of cutting material
- Fewer unexpected stops
- Less scrapped material
- Less time for quality verification
- Less time for tool change

Project goal $\sum = +50 \%$

Project layout

Literature review, project management, network, dissimilation...

Industrial demonstrators

Mapping current state

Variations

Between produced batches

Between in-house / sub-contracted process

In terms of

Material properties of hardened components

Hardness, microstructure, residual austenite

"Productivity" in HPT

Wear of cutting tools, tool life, produced component quality

Lab scale "generic" parts

Test parts designed for project

- Supplied by Ovako
- Cas carburizing Bodycote Angered

Test matrix

- Steel grades
- Carbon potential
- Tempering temperature

12 variants

Denomination, eg S12

1.2

159 S

Lab scale "generic" parts

Machining tests - tool wear studies

Initial wear (3-5 minutes)

Qualitative and quantitative wear studies

Progressed wear / tool life

12 steel/hardening combinations3 cutting speeds

Verification and application

Results from generic components

Wear and tool life at different cutting speeds

Characterized material from different carburizing variants

Results from demonstrator components

Variability of carburized material

Understand critical variations related to mapped insert performance

Guidelines - how case hardening can be specified for predictable machinability

Verification and application

For a selected demonstrator, application of tailored carburizing process

Machining at adapted conditions

To validate productivity increase

Project goal

Based on improved machinability and consistency of the process, optimize the case hardening processes for a more efficient machining operation and less processing time, targeting 50% increased productivity, compared with today.

Make guidelines for how the case hardening can be specified for a predictable machinability.

Increase the understanding for the correlation between properties in the case hardened component and tool life in hard part turning.

Impact goal

To shorten lead times and increase flexibility in production

by identifying how the material parameters in the hardened surface of the components affect the machining.

To increase productivity, decrease rejection rate and maintain component quality

by decreased tool wear and optimized cutting parameters

To prepare for digitalized production process

by connecting processes affected by microstructure along the production chain and analyze collected data.

